Q-transform of time series
qtransform.RdPerform a Q-transform over a time series and interpolate to desired resolution.
Usage
qtransform(
ts,
delta_t = NULL,
delta_f = NULL,
logfsteps = NULL,
frange = NULL,
qrange = c(4, 64),
mismatch = 0.2,
return_complex = FALSE
)Arguments
- ts
A
tsobject. Input time series.- delta_t
A numeric. Time resolution (optional).
- delta_f
A numeric. Frequency resolution (optional, mutually exclusive with
logfsteps).- logfsteps
A numeric. Number of log-spaced frequency bins (mutually exclusive with
delta_f).- frange
A numeric vector. Frequency range (Hz). Default:
c(30, Nyquist × 8).- qrange
A numeric vector. Q value range (default:
c(4, 64)).- mismatch
A numeric. Mismatch between tiles (default: 0.2).
- return_complex
Logical. Whether to return complex data instead of power (default: FALSE).
Value
A list with:
- times
Time axis (s)
- freqs
Frequency axis (Hz)
- q_plane
2D matrix of interpolated Q-transform (power or complex)
Details
This is a ported implementation based on the original
pycbc.filter.qtransform function from the PyCBC library.
References
PyCBC source: https://pycbc.org/pycbc/latest/html/_modules/pycbc/filter/qtransform.html