Skip to contents

Perform a Q-transform over a time series and interpolate to desired resolution.

Usage

qtransform(
  ts,
  delta_t = NULL,
  delta_f = NULL,
  logfsteps = NULL,
  frange = NULL,
  qrange = c(4, 64),
  mismatch = 0.2,
  return_complex = FALSE
)

Arguments

ts

A ts object. Input time series.

delta_t

A numeric. Time resolution (optional).

delta_f

A numeric. Frequency resolution (optional, mutually exclusive with logfsteps).

logfsteps

A numeric. Number of log-spaced frequency bins (mutually exclusive with delta_f).

frange

A numeric vector. Frequency range (Hz). Default: c(30, Nyquist × 8).

qrange

A numeric vector. Q value range (default: c(4, 64)).

mismatch

A numeric. Mismatch between tiles (default: 0.2).

return_complex

Logical. Whether to return complex data instead of power (default: FALSE).

Value

A list with:

times

Time axis (s)

freqs

Frequency axis (Hz)

q_plane

2D matrix of interpolated Q-transform (power or complex)

Details

This is a ported implementation based on the original pycbc.filter.qtransform function from the PyCBC library.